Session to Session Transfer Learning Method Using Independent Component Analysis with Regularized Common Spatial Patterns for EEG-MI Signals
نویسندگان
چکیده
منابع مشابه
EEG classification using generative independent component analysis
We present an application of independent component analysis (ICA) to the discrimination of mental tasks for EEG-based brain computer interface systems. ICA is most commonly used with EEG for artifact identification with little work on the use of ICA for direct discrimination of different types of EEG signals. By viewing ICA as a generative model, we can use Bayes’ rule to form a classifier. We ...
متن کاملMining EEG-fMRI using independent component analysis.
Independent component analysis (ICA) is a multivariate approach that has become increasingly popular for analyzing brain imaging data. In contrast to the widely used general linear model (GLM) that requires the user to parameterize the brain's response to stimuli, ICA allows the researcher to explore the factors that constitute the data and alleviates the need for explicit spatial and temporal ...
متن کاملRegularized Principal Component Analysis for Spatial Data
Abstract: In many atmospheric and earth sciences, it is of interest to identify dominant spatial patterns of variation based on data observed at p locations with n repeated measurements. While principal component analysis (PCA) is commonly applied to find the patterns, the eigenimages produced from PCA may be noisy or exhibit patterns that are not physically meaningful when p is large relative ...
متن کاملMajor Depression Detection from EEG Signals Using Kernel Eigen-Filter-Bank Common Spatial Patterns
Major depressive disorder (MDD) has become a leading contributor to the global burden of disease; however, there are currently no reliable biological markers or physiological measurements for efficiently and effectively dissecting the heterogeneity of MDD. Here we propose a novel method based on scalp electroencephalography (EEG) signals and a robust spectral-spatial EEG feature extractor calle...
متن کاملTranslation of EEG Spatial Filters from Resting to Motor Imagery Using Independent Component Analysis
Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) often use spatial filters to improve signal-to-noise ratio of task-related EEG activities. To obtain robust spatial filters, large amounts of labeled data, which are often expensive and labor-intensive to obtain, need to be collected in a training procedure before online BCI control. Several studies have recently developed zero-t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Iraqi Journal for Electrical and Electronic Engineering
سال: 2019
ISSN: 2078-6069,1814-5892
DOI: 10.37917/ijeee.15.1.2